Exploring the sound structure of novel vocalizations
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When humans speak or animals vocalize, they can produce sounds that are further combined
into larger sequences. The flexibility of sound combinations into larger meaningful sequences
is one of the hallmarks of human language. To some extent, this has also been found in other
species, like chimpanzees and birds. The current study investigates the structure of sounds
when speakers are asked to communicate the meaning of 20 selected concepts without using
language. Our results show that the structure of sounds between pauses is frequently limited to
1-3 sounds. This structure is less complex than when humans use their native language. The
acoustic distance between sounds depends largely on the concept apart from concepts referring
to animals, which show a higher diversity of involved sounds. This exploratory analysis might
provide evidence of how the structure of sound could have changed from simple to complex in
evolution.

1. Introduction

Human speech is composed of small units: sounds that are meaning-
distinguishing (phonemes). Several sounds combine into syllables, words, and
phrases that carry meaning(s). The sequential order of sounds into larger se-
quences is a milestone in speech acquisition, and already young infants can start
producing sequences of vocalization before they acquire their mother tongue
(Wermke, Robb, & Schluter, 2021). Even when language is acquired, nonver-
bal vocalizations are present in adult communication and are an emerging field of
study at the boundaries between non-human and human communication (Pisanski,
Bryant, Cornec, Anikin, & Reby, 2022). That means sequences of sounds are not
a property of human communication alone but are also found in non-human ani-
mals like birds (Sainburg, Theilman, Thielk, & Gentner, 2019; Doupe & Kuhl,
1999; Favaro et al., 2020), meerkats (Rauber, Kranstauber, & Manser, 2020),
chimpanzees (Girard-Buttoz et al., 2022). Comparative approaches between hu-
man and non-human animal vocalization deserve bottom-up methodologies rather
than human-centric analyses (Hoeschele, Wagner, & Mann, 2023). What has been



called a syllable in non-human vocalization refers to sound(s) produced between
pauses. In human speech production, similar chunks have often been termed inter-
pausal units (Bigi & Priego-Valverde, 2019; Prakash & Murthy, 2019). They refer
to speech that is realized between pauses.

In this exploratory study, we are interested in sounds realized in novel vocal-
izations during a charade game, i.e., in a situation where the use of actual words
of the participant’s language is ‘forbidden’. This paradigm has been used to inves-
tigate the origin and evolution of language (Fay et al., 2022; Cwiek et al., 2021;
Perlman & Lupyan, 2018).

This paper aims to explore how many sounds are realized between pauses in
non-linguistic vocalizations. Furthermore, we investigate the diversity of sounds
realized within different concepts, by assessing the distance between them in a
multi-variable acoustic space.

2. Methodology
2.1. Corpus creation

The present study uses a subset of data collected in a larger study in which partic-
ipants were recorded performing a series of concepts in three conditions. In the
three conditions, participants are asked to communicate a set of concepts using
either (1) only gestures, (2) only non-linguistic vocalizations and other sounds, or
(3) a combination of gestures and vocalizations. Here, we focus on a subset of the
vocalization recordings. We have not analyzed the vocalizations that are produced
in the multimodal condition because we assume that first, they are not stand-alone
carriers of the meaning, and second, their forms are shaped by the coordination
with body motion.

The recordings analyzed here were produced by 62 first-year psychology stu-
dents at the University of Western Australia (43 female, 17 male, 2 non-binary;
aged 17-33, M = 20.21, SD = 3.36). All were speakers of English. Of these, 28
participated in person and 34 remotely via Microsoft Teams, due to COVID-19
restrictions. Participants were allocated 60 concepts to communicate (20 in each
modality condition), sampled from a list of 200 concepts comprising the 100-item
Leipzig-Jakarta list of basic vocabulary (Tadmor, 2009) plus 100 other basic con-
cepts chosen based on their sensory and modality preferences (Lynott, Connell,
Brysbaert, Brand, & Carney, 2020). They were asked to communicate each con-
cept using the specified modality (and without using language) so that another
person would be able to view the recording and guess the concept from a list of
options. If the participants could not think of a way to communicate a concept,
they were permitted to skip it.



2.2. Concept extraction

For the exploratory analysis, we focused on a variety of concepts that might re-
flect different degrees of concreteness and abstraction (see 1). For example, the
concept maybe is rather abstract or logical than smoke. We chose these different
concepts to have a wider semantic potential, but have not added categories to the
concepts, because a dichotomy between concreteness vs. abstraction has currently
been questioned (Banks et al., 2023).
Our analysis only included concepts
for which initially at least 5 partici-
pants produced vocalizations. For three
concepts we excluded acoustic trials as

Table 1. Concepts used in this study. L-J
corresponds to the Leipzig-Jakarta list.

. . Concept List No. of speakers
they contained a.con31derable amount happy other 5
of background noise that made an anal- sad other 7
ysis unreliable. bad other 7
scared other 5
. good L-J 6
2.3. Acoustic angry other 7
annotation procedures disgusted  other 7
. . dog L-J 6
The acoustic data were labeled in Praat cat other 6
6.1.51 (Boersma & Weenink, 2021) by bird L-J 5
three annotators who are phoneticians ESh Ei g
by.trainir.lg. Following Swets, Fuchs, Olyd L] 4
Krivokapi¢, and Petrone (2021), all spoon other 5
silent intervals longer than 100 ms were egg L-J 6
treated as pauses and labeled with ‘p’. ?f(})‘ne rock Ei 2
Apart from placing boundaries next to smoke L-J 4
pauses, the annotators additionally la- maybe other 8
beled successive sounds without pauses. not L-J 7

The following criteria were used in the

decision-making process for separating

the speech stream into two or more

sounds: a) two (or more) prominent amplitude peaks in the amplitude envelope
were present, b) changes in spectral characteristics (e.g., formant structures) were
present, and c) sounds were perceptually distinct. Variations in fundamental fre-
quency, e.g., a downward and then upward motion, were only considered as two
sounds when they also showed spectral differences in higher frequency ranges
and/or differences in the amplitude envelope. All sounds were labeled with an
initial ‘s’ and successive numbers when they occurred in a sequence. The first
annotator (al) created the annotation criteria and labeled the data. Annotator 2
(a2) used the available TextGrids from al and changed the boundaries when she
disagreed. Both agreed on 94.6 percent of the number of sounds. Hereafter, al
inspected all acoustic files again where disagreement was found and confirmed the



changes. Annotator 3 (a3) started labeling from scratch without having TextGrids
available. Inter-rater agreement between a2 and a3 was 96.7 percent concerning
the overall number of labeled sounds. The temporal differences between the onset
of a given sound labeled by a2 and its closed temporal neighbor labeled by a3
were calculated. The same was done for the offset of a sound. The differences
were on average 0.048s (median = 0.018s) for the onset and 0.088s (median =
0.027s) for the offset. These differences are influenced by the number of sounds
an annotator labeled for a given concept, which makes the calculation of inter-
rater agreement challenging. We think that for the current exploratory analysis,
the overall agreement is reasonable. We decided to take a2’s segmentation for
further analysis.
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Figure 1. Example for acoustic annotation of the concept smoke. All segments are labeled as ‘s’ and
pauses as ‘p’. The red line depicts the intensity curve.

2.4. Analyses of acoustic similarity

Initially, all audio files were cut into segment-sized files using a custom Python
script. Acoustic analysis was performed on these sounds, using the analyze() func-
tion of the soundgen package in R (Anikin, 2019). The output of this function
consists of more than 100 acoustic parameters as listed in the documentation (e.g.,
f0, amplitude, formant values, entropy, and their respective mean, median, and
standard deviation). Some of these acoustic parameters are present or absent in
the recorded sounds, e.g., voicing. However, the presence of voicing is redundant
with intensity because voiced sounds are louder than voiceless ones and intensity



values can always be calculated. That means, some acoustic parameters are highly
correlated and redundant with others. For this reason, we excluded parameters re-
sulting in NA values in the post-processing. Moreover, we excluded voice quality
parameters (e.g., flux), because these parameters may have been very sensitive to
background noise, which occurred in some speakers. All final parameters were
averaged for the whole time series of a sound, and we used mean and standard
deviation for further explorations. We ended up with a multidimensional dataset
consisting of 45 acoustic parameters. For the analysis of acoustic similarity, we
calculated the Euclidean distance between the vector of acoustic parameters of
each sound, to all other sounds. As a result, we got a distance matrix that allowed
us to extract an average distance between sounds within a trial of a concept and
compare it to other concepts.

3. Results and Discussion
3.1. Structural similarity

To explore structural similarity, we analyzed if certain sounds occurring between
pauses appear alone or in successive order. When speakers try to communicate
concepts using novel vocalizations, they frequently realize a relatively small num-
ber of sounds between two pauses: 1 sound occurred 208 times, 2 sounds = 80
times, 3 sounds = 35 times, 4 sounds = 24 times, 5 sounds = 11 times, 6 sounds =
3 times, 8 sounds = 4 times, 9 sounds = 1 time, 10 sounds = 1 time, 16 sounds =
2 times, 18 sounds = 1 time. That means structurally most concepts (208 cases in
our dataset) are realized with only one sound <s> that is surrounded by pauses.
In 80 cases we found realizations of two successive sounds <ss> and in 35 cases
participants produced three successive sounds <sss> without being interrupted
by a pause. If the data are split by concept, vocalizations for cat, dog, and bird
(all within a broader class of animals) also have more than three successive sound
combinations, probably mirroring onomatopoeia. For the rest of the data, no con-
clusions can be drawn, because the number of sounds between pauses is concept-
specific.

If pauses are taken into account, sounds were combined flexibly, for exam-
ple, for four sounds we could get combinations such as <s|s|s|s> or <ss|ss> or
<ss|s|s> where | marks a pause.

3.2. Acoustic similarity

Similar sounds may be repeated, like in imitating ‘coo-coo’, or they may be of
different acoustic quality, like in imitating a cat’s ‘meow’. For this reason, we
were further interested in examining the similarity between sounds that make up
a novel vocalization.

To have a first look into the diversity of sounds, we analyzed their average
acoustic distance within each trial. We preferred this data-driven approach in



contrast to labeling the data to phonemic features because it allows us to include
sounds that may not occur in the English phoneme inventory, e.g., whistles or
clicks. It represents continuous acoustic data instead of putting categorical labels
to it, which could also be biased by the native language of the annotator.

Figure 2 depicts the results. We can see that the different concepts vary in their
average acoustic distance between sounds. Some abstract concepts like not consist
of sounds that are closer to each other in distance (i.e., more similar), while dog
has a larger average acoustic distance between the sounds. Those concepts with
several successive sounds (e.g., <sss>) are also the ones with the largest average
distance.
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Figure 2. Average acoustic distances between sounds within a single trial displayed by concept,
boxplots, and half-violins in purple display data distribution, black dots correspond to single trials.
Each concept is displayed at the x-axis and ordered by alphabet.

In summary, the structure of novel vocalizations obtained from a charade game
most often contains either one, two, or three successive sounds that are not sep-
arated by pauses. This may to some extent be similar to infant’s vocalization
(Wermke et al., 2021) and non-human species. It is different from human speech
production, where already syllables or morphemes can consist of three sounds.
Those are combined into larger chunks that are not interrupted by pauses. Our
findings suggest that novel vocalizations have a rather simple sound structure that
is complexified (i.e., more and probably shorter sounds are realized in a sequence)
during language evolution.

4. Supplementary Materials

Dataset and scripts are available on https://github.com/sarkadava/
Evolang2024_SoundSimilarity.
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