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One reason that languages come to have the properties they do is because those
properties make a language easier to learn, its rules easier to generalise (Kirby,
Griffiths, & Smith, 2014). Here, we ask which statistical properties of a language
help people to decide whether a linguistic rule can be extended to new instances.

Previous research has generated seemingly conflicting hypotheses regarding
the role of Shannon entropy. Segmentation and generalisation (closely related
processes; Frost & Monaghan, 2016) are facilitated when items the rule applies
to follow a skewed frequency distribution (e.g., Kurumada, Meylan, & Frank,
2013; Lavi-Rotbain & Arnon, 2019b, 2019a, 2021, 2022; Casenhiser & Gold-
berg, 2005; Goldberg, Casenhiser, & Sethuraman, 2004). Since skewed distri-
butions have lower entropy than uniform distributions over the same number of
items, this finding has been explained as a facilitatory effect of low entropy (e.g.,
Lavi-Rotbain & Arnon, 2022). At the same time, rules are more readily gener-
alised when they apply to a large number of distinct types (e.g., Gómez, 2002;
Tamminen, Davis, & Rastle, 2015; Valian & Coulson, 1988; Radulescu, Wijnen,
& Avrutin, 2020). This result has also been explained in terms of entropy—but
now, since a distribution over more types has higher entropy than a distribution
over fewer, the prediction is that high entropy prompts generalisation. How do
these seemingly contradictory findings fit together?

In this preregistered artificial language learning experiment (osf.io/
5keh9), we disentangle how skew, type count, and entropy influence generalisa-
tion. Participants learned two different plural suffixes, each occurring with stems
that followed one of two frequency distributions (Figure 1A). Then at test, they
were asked to choose which of the two suffixes to use with novel stems. For half
of the participants, the distributions that were contrasted were a uniform distri-
bution over four types (Unif4) vs. a skewed distribution over four types (Skew4).
For the other half, the distributions were, again, Unif4 vs. a uniform distribution
over twice as many types (Unif8). Including Unif4 in both groups gives a baseline
from which we can evaluate the individual effects of skew (in Group 1) and type
count (in Group 2).
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Figure 1. (A) The frequency distributions compared (Group 1 saw Skew4 and Unif4; Group 2 saw
Unif4 and Unif8). (B) The suffixes that perfect learners generalised with tend to be the ones that
appear with more variable stems (Skew4 in Group 1; Unif8 in Group 2). (C) This finding aligns with
the posterior probabilities of missing a type when sampling from posited latent distributions.

We analyse data for participants who perfectly learned the language (N = 77 of
100, split 38–39 between groups). We found that Group 1 preferred to generalise
with Skew4, while Group 2 preferred Unif8 (Figure 1B). A Bayesian linear model
estimated the probability of generalising with the non-baseline suffix as 56.3%
(95% CrI: [49.8%, 62.8%]). The same model estimated no difference between
the two participant groups (β = 0 log-odds, 95% CrI [–0.49, 0.51]); skew and a
greater type count provide comparable evidence that the suffix can be generalised.

These results are consistent with the empirical findings of both sets of studies
summarised above, and thus not with an explanation based on entropy. We pro-
pose instead that the explanation follows from participants reasoning in a proba-
bilistic, Bayesian way. In particular, participants in our task must essentially guess
which suffix is more likely to appear with additional types beyond the ones they’ve
already seen. If Unif4 were only a sample from some larger latent distribution, say
Unif5, then observing only Unif4 and missing that fifth type is relatively unlikely.
But missing a type when sampling from a latent Skew5 or Unif9 would be much
more likely because of the greater number of low-frequency types overall.

Figure 1C shows each group’s posterior probabilities of failing to encounter
one or more types when sampling from each latent distribution. These probabili-
ties heavily favour the distribution that learners in our experiment preferred. The
greater generalisability of rules with these features could be part of the explanation
for why languages come to have properties such as skew; ultimately, probabilistic
reasoning of the kind we observe may shape the statistical structure of language.
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